A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media

نویسندگان

  • Xiang Ma
  • Nicholas Zabaras
چکیده

We consider natural convection in flow saturated porous media with random porosity. The porosity is treated as a random field and a stochastic finite element method is developed. The stochastic projection method is considered for the solution of the high-dimensional stochastic Navier-Stokes equations since it leads to the uncoupling of the velocity and pressure degrees of freedom. Because of the porosity dependence of the pressure gradient term in the governing flow equations, one cannot use the first-order projection method. A stabilized stochastic finite element second-order projection method is presented based on a pressure gradient projection. A twodimensional stochastic problem with moderate and large variation in the random porosity field is examined and the results are compared with Monte Carlo and sparse grid (Smolyak) collocation approaches. Excellent agreement between these results indicates the effectiveness and accuracy of the proposed methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A Numerical Modeling for Natural Convection Heat Transfer in Porous Media With Generated Internal Heat Sources

In this paper a numerical method is used to study the unsteady state natural convection heat transfer within a confined porous media with uniform internal heat generation. The governing equations based on the Darcy model and Bossiness approximations are solved, using the finite difference Alternating Direction Implicit (ADI) method. The developed program was used to simulate natural convection ...

متن کامل

Variational Multiscale Stabilized Fem Formulations for Stochastic Advection-diffusion Equations

An extension of the deterministic variational multiscale approach with algebraic subgrid scale modeling is considered for developing stabilized finite element formulations for the stochastic advection-diffusion equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element method. Generalized Askey polynomial chaos and Karhunen...

متن کامل

On the natural stabilization of convection diffusion problems using LPIM meshless method

By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...

متن کامل

Numerical Analysis of Finite Element Methods for Miscible Displacements in Porous Media

Finite element methods are used to solve a nonlinear system of partial diierential equations which models incompressible miscible displacement of one uid by another in porous media. From a backward nite diierence discretization we deene a sequentially implicit time-stepping algorithm which uncouples the system. The Galerkin method is employed to approximate the pressure, and improvement velocit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008